
1 Introduction
Now, we will begin our study of probability theory, the second major component of statistical

analysis. As I mentioned at the start of the course, statistical

analysis often has to concern itself with uncovering information

about an unknown population based on information gleaned from a

sample. Since, by definition, a sample does not provide a complete

and comprehensive view of the population under study, we try to

use information about the sample to reduce the uncertainty

surrounding our understanding of the unknown population.

Probability theory is absolutely fundamental in this enterprise.  It

provides a set of conclusions about randomness and the unknown

world that will allow us to reduce our uncertainty about the

population in question.

That is, we will be attempting to provide answers to questions of the following

type:

<Suppose we have a die which is perfectly balanced; how often can

we expect an ace to turn up in repeated throws (samples)?>

Or,

<Suppose we know that the weight of all women aged 20 in the

U.S. averages 123 lbs and is distributed normally with 15 lbs; how

often can we expect  the sample mean of a random sample of size

20 to be within 15 lbs of the  population mean?>

Lecture: PROBABILITY THEORY
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2 Defining Probability
In addition to the many formal applications of probability theory, the concept of probability enters

our everyday life and conversation. We often hear and use such

expressions as: "It probably will rain tomorrow afternoon"; "It is

very likely that the plane will arrive late"; or "The chances are good

that he will be able to join us for dinner this evening." Each of these

expressions is based on the concept of the probability, or the

likelihood, that some specific event will occur.

Despite the fact that the concept of probability is such a common and natural part

of our experience, no single scientific interpretation of the term

probability is accepted by all statisticians, philosophers, and other

authorities. Through the years, each interpretation of probability

that has been proposed by some authorities has been criticized by

others. Indeed, the true meaning of probability is still a highly

controversial subject and is involved in many current philosophical

Note, that in none of the following development of probability theory will I refer to a given

sample and ask questions about the population from which it

comes; that is a question of statistical inference to which we will

turn after we’re done with probability theory.  What we're asking

now are guestions about the features of samples drawn from known

populations.  Later, we'll use our accumulated information

developed in this part of the course to turn around and ask

questions of unknown populations.
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2.1. The Frequency Interpretation of Probability
In many problems, the probability that some specific outcome of a process will be obtained can be

interpreted to mean the relative frequency with which that outcome

would be obtained if the process were repeated a large number of

times under similar conditions. For example, the probability of

obtaining a head when a coin is tossed is considered to be ½

because the relative frequency of heads should be approximately ½

when the coin is tossed a large number of times under similar

conditions. In other words, it is assumed that the proportion of

tosses on which a head is obtained would be approximately ½.

Of course, the conditions mentioned in this example are too vague to serve as the

basis for a scientific definition of probability. First, a "large number"

of tosses of the coin is specified, but there is no definite indication

of an actual number that would be considered large enough.

Second, it is stated that the coin should be tossed each time "under

similar conditions," but these conditions are not described precisely.

The conditions under which the coin is tossed must not be

completely identical for each toss because the outcomes would then

be the same, and there would be either all heads or all tails. In fact,

discussions pertaining to the foundations of statistics. Two different

interpretations of probability will be described here. Each of these

interpretations can be very useful in applying probability theory to

practical problems.
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a skilled person can toss a coin into the air repeatedly and catch it in

such a way that a head is obtained on almost every toss. Hence, the

tosses must not be completely controlled but must have some

"random" features.

Furthermore, it is stated that the relative frequency of heads should be

"approximately ½," but no limit is specified for the permissible

variation from ½. If a coin were tossed 1,000,000 times, we would

not expect to obtain exactly 500,000 heads. Indeed, we would be

extremely surprised if we obtained exactly 500,000 heads. On the

other hand, neither would we expect the number of heads to be

very far from 500,000. It would be desirable to be able to make a

precise statement of the likelihoods of the different possible

numbers of heads, but these likelihoods would of necessity depend

on the very concept of probability that we are trying to define.

Another shortcoming of the frequency interpretation of probability is that it applies

only to a problem in which there can be, at least in principle, a large

number of similar repetitions of a certain process. Many important

problems are not of this type. For example, the frequency

interpretation of probability cannot be applied directly to the

probability that a specific acquaintance will get married within the

next two years or to the probability that a particular medical

research project will lead to the development of a new treatment for

a certain disease within a specified period of time.
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2.2. The Subjective Interpretation of Probability
As an illustration of this interpretation, suppose that a coin is to be tossed once. A person with no

special information about the coin or the way in which it is tossed

might regard a head and a tail to be equally likely outcomes. That

person would then assign a subjective probability of  ½ to the

possibility of obtaining a head. The person who is actually tossing

the coin, however, might feel that a head is much more likely to be

obtained than a tail. In order that people in general may be able to

assign subjective probabilities to the outcomes, they must express

the strength of their belief in numerical terms. Suppose, for

example, that they regard the likelihood of obtaining a head to be

the same as the likelihood of obtaining a red card when one card is

chosen from a wellshuffled deck containing four red cards and one

black card. Because those people would assign a probability of 4/5

According to the subjective, or personal, interpretation of probability, the probability that a

person assigns to a possible outcome of some process represents

her own judgment of the likelihood that the outcome will be

obtained. This judgment will be based on each person's beliefs and

information about the process. Another person, who may have

different beliefs or different information, may assign a different

probability to the same outcome. For this reason, it is appropriate

to speak of a certain person's subjective probability of an outcome,

rather than to speak of the true probability of that outcome.
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to the possibility of obtaining a red card, they should also assign a

probability of 4/5 to the possibility of obtaining a head when the

coin is tossed.

This subjective interpretation of probability can be formalized. In general, if

people's judgments of the relative likelihoods of various

combinations of outcomes satisfy certain conditions of consistency,

then it can be shown that their subjective probabilities of the

different possible events can be uniquely determined.

Difficulties: However, there are two difficulties with the subjective

interpretation. First, the requirement that a person's judgments of

the relative likelihoods of an infinite number of events be

completely consistent and free from contradictions does not seem

to be humanly attainable. Second, the subjective interpretation

provides no "objective" basis for two or more scientists working

together to reach a common evaluation of the state of knowledge in

some scientific area of common interest.

Benefits: On the other hand, recognition of the subjective interpretation of

probability has the salutary effect of emphasizing some of the

subjective aspects of science. A particular scientist's evaluation of

the probability of some uncertain outcome must ultimately be that

person's own evaluation based on all the evidence available. This

evaluation may well be based in part on the frequency interpretation

of probability, since the scientist may take into account the relative
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2.3. Some Differences between the Frequentist and Subjective Views

frequency of occurrence of this outcome or similar outcomes in the

past. It may also be based in part on the classical interpretation of

probability, since the scientist may take into account the total

number of possible outcomes that are considered equally likely to

occur. Nevertheless, the final assignment of numerical probabilities

is the responsibility of the scientist herself.

The subjective nature of science is also revealed in the actual problem that a

particular scientist chooses to study from the class of problems that

might have been chosen, in the experiments that are selected in

carrying out this study, and in the conclusions drawn from the

experimental data. The mathematical theory of probability and

statistics can play an important part in these choices, decisions, and

conclusions.

NOTE: The Theory of Probability Does Not Depend on Interpretation. The mathematical

theory of probability we will develop is developed without regard

to the controversy surrounding the different interpretations of the

term probability. This theory is correct and can be usefully applied,

regardless of which interpretation of probability is used in a

particular problem. For most of what we'll do, the difference

between subjective and objective probability concept does not make

a difference  in our analysis of a problem.  The book takes a

frequentist approach to the problem.
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How about the following frequentist definition:  Assume that we're betting

against rolling a one when throwing a die. Now,  intuitively we

expect each of the six numbers on a die to be equally probable,

Right?

What therefore is the probability of rolling an ace?>  1/6, provided it is an honest

die.  If we're not sure it's an honest die, the probability of getting an

ace might be different.

In fact, if we rolled that die many times we would expect to get a better and better

idea of whether that die is honest or not, right?

Let's say that there are six possible events each time we roll the die, el, e2, e3, e4, e5, e6,  Then

after many throws we expect the probability of throwing an ace

(e1) to be

Frequentist Definition of Probability:

where n is the number of tosses and n1 is the number ofPr(e1 ) =ndºlim ( n1
n )

aces (ones).

In other words as the number of throws gets very large, the ratio of number of

aces (n1) to the number of throws n (the relative frequency of aces)

is the probability of e1.

Seems reasonable doesn't it?  We'll just define the probability of an event e1  as the long-run

relative frequency of that event in repeated trials.

Note something important here: Under this definition of probability only a random variable can

have a probability and an associated probability distribution.  For

example, the population mean weight of all 20 year old women is
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not a random variable. It exists and does not vary at a given point in

time.  Sample means will vary all over the place because they're

functions of random drawings made out of a very large population.

Consequently, under a frequentist notion of probability, only sample means,

standard deviations, etc. can have probability distributions.

Population means, standard deviations, variances, etc do not;

either the population mean is a given value (Pr = 1) or it is not

(Pr = 0). <Does this seem reasonable to you?>

Subjectivists believe something different:   Probability generally is subjective; it represents our

opinions about unknown events whether we have new data or not.

If you believe probability is subjective, then you see noting wrong

in saying something like, "The probability that the average weight

of 20 -year old females is between 115 and 125 lbs is 0.65."  You

are constructing your own probability distribution around the

population mean; frequentists would say that this is incorrect -- you

cannot associate probability with a population parameter, only with

a chance event, like a sample mean. This is one element in the

current hot debate between two schools of statisticians, the

Bayesians (challengers, wearing black trunks) and the Classicists

(champion in in white).

Mathemeticians take another approach completely:  They make some basic and reasonable

assumptions about how a probability measure should behave and

then they use these assumptions (postulates, axioms) to deduce
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3.1. The Experiment and Outcomes of Experiment
The Experiment: when we talk about an experiment we mean  any situation capable

of replication under essentially stable circumstances e.g., flipping a

coin, timing the length of time it takes a rat to travel a maze,

measuring the a speed of a pitcher's fast ball, measuring the failure

rate of a space craft electronic component.>

Outcomes of an experiment:There may be a finite number of outcomes to our experiment.  E.g.

in flipping a coin there are only 2 outcomes - Rolling one die there

are 6 outcomes

< How many possible outcomes when 2 dice are rolled?>  36(=6x6)

<When 3 dice are rolled?>  (6x6x6=) 216

The number of outcomes to an experiment may be infinite:<In timing a rat's trip through a maze

how many possible outcomes?> Potentially an infinite number,

depending on how  closely time is measured."

3.2. Determining Outcomes: Counting, Permutations & Combinations
Often it is very difficult to determine just what all the possible outcomes of an experiment are. For

example, suppose we toss a coin three times: <How many different

possible outcomes are there to this experiment?>

Perhaps the easiest way to figure this out is with a tree diagram {Next Slide} :

3 The Probability Model

many interesting characteristics of samples drawn from known

populations.  We'll sketch how this is done in a minute, but first

some terminology from set theory.
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Outcomes for 3 tosses of
a coin:

H

T

Toss 1

H

T

H

T
Toss 2

H

T

H

T

H

T

H

T
Toss 3

(HHH)

(HHT)

(HTH)

(HTT)

(THH)

(THT)

(TTH)

(TTT)

8 Outcomes

Mathematically, we have 2 outcomes for the first throw, 2 for second and 2 for the

third ... consequently we have 23  = 8 possible outcomes since

either outcome can occur in second- and third tosses no matter

what happens on the first (This is the exponential counting rule).

<Is each outcome equally likely?> only if coin is "fair"

<What if you were to go to  Wendy's and order one of their 6 different types of

hamburgers and one of 5 different drinks … assuming that an

outcome is a combination of hamburger and drink, how many

possible combinations are possible 6  x  5  =  30 outcomes {Next

Slide}
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D1
D2

D3
D4
D5

D1
D2

D3
D4

D5

D1
D2

D3
D4

D5

D1
D2

D3
D4

D5

D1
D2

D3
D4

D5

D1
D2

D3
D4

D5

H-A

H-B

H-C

H-D

H-E

H-F

How many combinations
of hamburgers (A thru F)
and soft drinks (1 thru 5)
at Wendy's?

There are 6 x 5 = 30
possible combinations
of hamburgers and
soft drinks

<Finally, suppose out of the 6 different hamburgers at Wendy's, I wanted to buy

two hamburgers.  How many different combinations of hamburgers

could I buy?> {Next Slide}

H-A

H-B

H-C

H-D

H-E

H-F

H-A

H-B

H-C

H-D

H-E

H-F

H-A

H-B

H-C

H-D

H-E

H-F

H-A

H-B

H-C

H-D

H-E

H-F

H-A

H-B

H-C

H-D

H-E

H-F

H-A

H-B

H-C

H-D

H-E

H-F

H-A

H-B

H-C

H-D

H-E

H-F

How many different combinations
of Wendy's hamburgers
can we buy, if we buy 2 burgers?
(One combination could be
the same burger twice)

36 different
combinations?
(6x6=36?)

No! From the top
branch we can get
6 combinations, but
from the next branch
only 5, the next only
4, 3, 2 and 1 = 21
combinations, allowing
the purchase of 2 burgers
of the same kind.

What if we don't allow
2 burgers of the same
kind?

Then, we can only find

( )2
6 6!

2 4
720

2 24
15= =

´
=

! !
 combinations
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Now, let's present some computing formulas that will help us to determing the number of

outcomes in various experiments {Next Slide} :

( ) ( ) ( ) ( )n rP
n

n r
n n n n r=

-
= ´ - ´ - ´ ´ - +

!
!

1 2 1K

Number of Permutations of n things taken r at a time

Number of Combinations of n things taken r at a time

( ) ( )n r
n rC

n
r n r

P
r

= =
-

=r
n !

! ! !

<Suppose there are 21 candidates for the student legislature in the upcoming elections with 5 to

be elected; how many possible outcomes to the election (assume

the top 5 vote getters are elected)>

21 x 20 x, 19 x 18 x 17 = 2,441,880 possible, outcomes , ordered quintuples, 21Pr

<Assume further that the Blue Sky party is running 5 candidates.  How many of

these outcomes are favorable to the event that all of the blue-skyers

are -elected? That is, how many different ways can these 5

candidates arrange themselves?)> 120 (= 5!)

<If each outcome is equally likely, what is the probability that all 5 blue-skyers will

be elected?> 120/2,441,880 = 0:0000491 = 5!
nPr
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3.3. Sample Space
Sample space: The set of all possible outcomes of an experiment.

A sample space is discrete if all possible outcomes can be identified

and counted Eg, the sample space for a coin flip contains the

following possible outcomes: {H;T}  if we flip the coin twice the

In this example, what we're about to call the sample space contains 2,441,880

outcomes of which only 120 are favorable to the event

"clean-sweep by B1ue-Sky "

Note, that often we're not interested strictly in different outcomes: for example if

we're interested in a clean sweep by the blue-sky party, we are

interested only in those outcomes in which all those elected are

members of blue-sky…

But this is a special case of the general question, "How  many different ways can

we choose a group -of five persons WITHOUT REGARD T0 THE

ORDER IN WHICH THE TOP FIVE FINISH?  In our example,

the answer is,

( ) ( )n rC = =
-

=r
n  distinct combinations

21
5 21 5

20 349
!

! !
,

of 5 candidates only one of which contains all members of Blue-Sky

 as before.1
20349 = 0.0000491

What we've been doing is undertaking a brief review of permutations and combinations as a

way of determining the number of possible outcomes to a given

experiment.
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set of all possible outcomes is {H,H;   H,T;   T,H;   T,T}

<What if we flip a coin 3 times…what is the set of all possible outcomes?> 8

outcomes:

{H,H,H;   H,H,T;   H,T,T;   T,T,T;   T,H,T;   TH,H;   T,T,H;

H,T,H}

<What is the sample space for one roll of a die?>  { 1,2,3,4,5,6}

<What is the sample space for one roll of two dice?> {Next Slide}

Sample Space for One Roll of Two Die

First Die

Se
co

nd
D

ie

0 1 2 3 4 5 6
0
1
2
3
4
5
6

= 36
outcomes

A continuous sample space exists if the number of possible outcomes is infinite and uncountable.

Eg: the exact weight of a 20 year old college student, the 100 yard

dash time of a runner.

Whether or not a sample space is continuous or discrete often depends on the level

of measurement of the outcome; e.g., if we measure weight to the

nearest pound, then our sample space is discrete.

Often when working with continuous sample spaces we may want to group our

measures in order to produce a discrete sample space.
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3.4. Random variables:
Given a sample space and the set of elementary events, we often want to determine the probability

of one of the elementary events.  Or, we may want to consider the

probability of one or more of these elementary events:

For example, in matching pennies we may want to determine the probability of

having either both heads or both tails.  There are 4 outcomes

(elementary events) to the experiment only two of which meet our

criterion for a success.

Likewise, if we want to determine the probability that one roll of a die will give a

number less than three, we must include rolls of 1 and 2. Therefore

it is useful to have a standard way to define the relevant outcomes

(elementary events) of any given experiment (sample space).

In defining a sample space of an experiment, we must be sure that it is not possible for two or

more outcomes in the same replication of the experiment. If one

and only one am outcome is possible in each experiment then the

outcomes are mutually exclusive.

We can call each mutually exclusive outcome an elementary (or simple) event

<this definition is not in the book, but remember it anyway>...

Sample space contains all elementary events (or all possible mutually exclusive outcomes)

The set of elementary events must be exhaustive also, that is it must

contain all possible outcomes.Thus, the set of elementary events, s,

that comprises a sample space is both exhaustive and mutually

exclusive.
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3.4.1 A Random variable

A random variable is a well-defined rule for making the assignment of a numerical

value to any outcome of the experiment. Example: To define the

outcomes of a simple coin toss  we define the Random Variable <

 (Notation)>{Next Slide}~x

~x=
1 if outcome = H
0 if outcome = T

Here’s another example:  Matching pennies {Next Slide}

{Next Slide}~x=
1 if there is a match
0 if there is no match

{H,T; H,H; T,H; T,T}

~
x=0

~
x=1

What about rolling 2 dice? The elementary events are: {Next Slide}
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Elementary Events One Roll of Two Die

First Die

Se
co

nd
D

ie

0 1 2 3 4 5 6
0
1
2
3
4
5
6

= 36
elementary
or simple
events

What is the probability of any one of these elementary events? 1/36.

Now, suppose that we want to define a Random Variable so that it takes on the

values of the sum of the two dice.

Define ~x= Roll#1 + Roll#2

What are the possible values that our Random Variable can take? How many

elementary events (outcomes) go with each value of x?

112
211
310
49
58
67
56
45
34
23
12

Number of
Elementary
events

~x

Now, intuitively what is the probability
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6/367
1/362

01

Probability
~x= ?

etc.

A probability distribution of a Random Variable gives, for each value of the R.V. the

probability that a given value will be obtained  -  for a discrete

distribution, the probability of each value of x  on our dice rolling

experiment looks like {Next Slide}

Probability Distribution for Roll of 2 Dice

probability
0 0.03 0.06 0.09 0.12 0.15 0.18

2
3
4
5
6
7
8
9

10
11
12

V
al

ue
of

R
V

I’ll define probability more precisely in a moment.

To Repeat: To construct a probability model we undertake the following steps:

1. Define the experiment and recognize its set of mutually exclusive and exhaustive

outcomes (the sample space)

2. Define a Random Variable which assigns a number to EACH outcome in the sample

space.

3. Determine the probability of each value of the R.V. to obtain a probability distribution.
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3.5. Events & set notation:

The sample space is the set of all possible outcomes of an experiment. <What do you think is the

probability of the sample space?> One!!

An Elementary Event is another name for each possible outcome in the sample

space. In a very real sense, our elementary events are the “atoms”

of the theory of statistics, or of probability theory as it is also

called.

<What is the probability of each elementary event in our dice rolling experiment.> 1/36

Therefore, more rigorously we can define a sample space as a set of elementary

events that are mutually exclusive and exhaustive.

Definition of probability:

We define the probability of an elementary event as a number between zero and

one such that the sum of the probabilities over the sample space is

one.  To each elementary event,  we assign a number betweene i,

zero and one, call it  We can write this as: {Next Slide}p i.

 for a sample space having k elementary events,
S = {e1, e2 , ¬ ¬, ek}

o o o o o
p1 , p2, ¬ ¬, pk}

or, we can write this as: {Next Slide}
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e pr e p
e pr e p
e pr e p

e pr e pk k k

1 1 1

2 2 2

3 3 3

® =
® =
® =

® =

( )
( )
( )

( )
L

Where the expression pr(e2) means “assign a specific number between zero and

one to the elementary event that is designated in the argument,” e2

in this case; and the value given by that assignment is p2 .  The

notation reinforces the idea that we are assigning a number to each

elementary event.

Therefore, a probability distribution, as its name implies is a statement of how probabilities are

distributed over  the elementary events in the sample space.

<In any experiment must the probability of each elementary event always be equal

to the probability of all other elementary events?> No, take for

example an unfair coin that has

P(HEAD)  =  .7

P(TAIL) = . 3

3.5.1 Compound events

When we talk about the probability that at least one of a collection of elementary events occurs,

we are talking about the probability of a compound event. When

the compound event is made up of elementary events, then it turns
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out that we can add up the individual probabilities of the elementary

events:

pr(e i, or e j, or ek,¬, or em ) = p i + p j + pk + + pm .

An Event is a subset of the sample space containing zero or more of the elementary events.

<What about the event { Sum of two dice =7}? that is the collection of elementary

events along the diagonal of our model. {Next Slide}

Sample Space for One Roll of Two Die

First Die

Se
co

nd
D

ie

0 1 2 3 4 5 6
0
1
2
3
4
5
6

All Elementary
events where
the sum of the
2 dice = 7

Properties of our Probability Measure:

1. P(Sample Space) = 1.

2. 0 [ P(Any Event in S) [ 1.

3.5.2 Set Notation And Venn diagrams

A sample space is a set of all possible Elementary Events {sample space elements}; however,

when the number of elements in a set is too large to list, we define

the sample space as a set with a rule for inclusion in the set.
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For example, the toss of two coins leads to a sample space with four possible

elementary events:  {HT,HH, TH,TT} ; however, sometimes the

sample space is just too large to list all the elementary events, so we

resort to the following kinds of identification of set members:

represents all numbers between zero and infinity.C = ~x |0 [~x[ º

represents all integersD = ~x |0 [~x[ 300, 000 and ~x= integer

between 0 and 300,000.

The complement of an event is that subset of a sample space containing NO elements of the

event

Given a sample space S: Let A = Event and
-
A= complement of the event

{Next Slide}

A

A- S

The sample space, S, contains all the elementary events
The Event A contains all elementary events corresponding

    to an inclusion rule.
All other elementary events are in the complement A-bar.

 = {all sample points not in A}
-

A= S - A

3.5.1 Intersection of two events:

Consists of all outcomes common to two events. {Next Slide}
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3.6. The Rules of Probability

3.6.1 Probability of  the Union of  mutually exclusive events (Special addition Rule)
{Next Slide}

A

S

The intersection consists of all outcomes common to two events.

B
A BI

The union of two events consists of all elementary events that are members of either event:

}A B x x A or x BU = Î Î{ |
~

{Next Slide}

A

S

The Union of two events A & B consists of all elementary
    events contained in either A or B.

B

}A B x x A or x BU = Î Î{ |
~
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A

S

A and B are two mutually exclusive events (no elementary
events in common)

B

( ) ( ) ( ) ( )Pr PrA B P A P B A BU = + =  or

The Special Additon Rule: If event A and event B are mutually exclusive, then,

( ) ( ) ( ) ( )Pr PrA B P A P B A BU = + =  or

or, more generally, if events A, B, C, ... are mutually exclusive then

( ) ( ) ( ) ( ) ( )Pr PrA B C P A P B P C A B CU U UK K K= + + + =  or  or  or

3.6.2 The Probability of the Union of Complementary Events: {Next Slide}

Pr{ } Pr( ) Pr( )
Pr( ) Pr( )
.

_ _
A A A A

A A
U = +

= + -
=

1
1

A

A- S

The Probability of the union of complementary
events, A & A-bar is one!
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The Complementation Rule states that for any event A, the probability of event A is 1 minus the

probability of “not A”:

P(A) = 1 - P A .

3.6.3 The General Addition Rule

If A and B are any two events, then: {Next Slide}

( ) ( ) ( ) ( ) ( )Pr PrA B P A P B P A B A BU I= + - =  or

( ) ( ) ( ) ( ) ( )Pr PrA B P A P B P A B A BU I= + - =  or

A

S

The General Addition Rule requires the subtraction of the
probability of Intersecting events.

B
A BI

or, more generally

( ) ( ) ( ) ( ) ( ) ( )Pr PrA B C P A P B P C P A B C A B CU U UK K I I IK K= + + + - =  or  or  or

3.6.4 The Probability of the Intersection of Complementary Events

The intersection of two events consists of all those elementary events that are

common to both events.  Complementary events have no

elementary events in common.  Therefore,

Pr A 3
_
A = 0.
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3.7. Contingency Tables & Conditional Probability
Suppose a drug company wants to test the effectiveness of a new anti-allergy drug they wish to

put on the market to compete with, Claritin. They propose the

following experiment:

1. First, sample 100 people with allergy problems. <How do we describe the population from

which the sample is drawn?> The population of allergy sufferers.

2. Second, Randomly select 20 of the 100 to receive a placebo, the other 80 to receive the

experimental drug.

3. Third, Administer the drug and check after 24 hours to see if the individual reacts after

being exposed to ragweed pollen.

Here are the results expressed in a  table: {Next Slide}

1002080Total

761264No Allergic

Symptoms A

24816Allergic Symptoms
(A)

TotalReceived the Placebo
D

Received the Drug
(D)

The colored interior boxes are called cells.  They show the number of observations exhibiting each

combination of the two events.  The total column shows the

number of obsservations showing both types of allergic reaction,

and the total row shows the number of observations receiving each

kind of treatment.

The table itself is called a contingency table and it shows the frequency distribution for bivariate

data. This kind of table can also be called a two-way table.

<Now, suppose we were to randomly select one person from our group:
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1. <What is the probability that any one person will have been selected? > [1/100]

2. <What is the probability that the person selected will have received the drug and shown

allergic symptoms?>  Only 16 chances out of 100.  This is the probability of the

intersection of two events:

� P(D 3 A) = 16
100 = 0.16.

3. <What is the probability that any person chosen will have received the drug.>  80 chances

out of 100.

� P(D) = 80
100 = 0.80.

4. <What is the probability that a randomly selected respondent will have exhibited allergic

symptoms?>

� P(A) = 16+8
100 = 0.24.

Let’s create another table that shows, in each cell, the probability that a particular event occurs:

{Next Slide}

1.00P D = 0.20P(D) = 0.80P(D) & P D

P A = 0.76P A 3D = 0.12P A 3D = 0.64No Allergic

Symptoms A

P(A) = 0.24P A 3D = 0.08P(A 3D) = 0.16
Allergic Symptoms
(A)

P(A) & P A
Received the Placebo
D

Received the Drug
(D)

{Next Slide}
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Received the
Drug

Received the
Placebo

Allergic Symptoms

No Allergic
Symptoms A

A

D D
( )P A DI = 016.

( )P A DI = 0 64.

( )P A DI = 0 08.

( )P A DI = 012. ( )P A = 0 76.

( )P A = 0 24.

( )P D = 0 20.( )P D = 080.

( ) ( )P A P A&

( ) ( )P D P D& 10.

3.7.1 Joint & Marginal Probabilities

The probabilities listed in this table have names.  In the cells, they are called joint probabilities

and on the margins they are called marginal probabilities. {Next

Slide}

Received the
Drug

Received the
Placebo

Allergic Symptoms

No Allergic
Symptoms A

A

D D
( )P A DI = 016.

( )P A DI = 0 64.

( )P A DI = 0 08.

( )P A DI = 012. ( )P A = 0 76.

( )P A = 0 24.

( )P D = 0 20.( )P D = 080.

( ) ( )P A P A&

( ) ( )P D P D& 10.

Joint
Probabilities

Marginal
Probabilities

Joint probabilites show the probability of two events happening together, while marginal

probabilities show the overall probability of a single event

happening, irrespective of what’s happened with the other event.

We can use the joint and marginal probabilities to develop the notion of conditional probability,

an extremely important type of probability.

<What if we chose randomly someone who we know had received the drug?  What

is the probability that the person would have exhibited allergic

symptoms?>
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P(A|D) = P(A3D)
P(D) =

16
100
80
100

= 16
80 = 0.20.

That is, the probability that a person has an allergic reaction conditional upon his

already having received the drug is equal to the quotient of the joint probability and the

marginal probability of having received the drug.

Therefore, the general formula for the  conditional probability , can beP(A|D)

written:

P(A|D) = P(D3A)
P(D) .

NB:  The conditional probability involves the use of additional information related

to the second event;  consequently, the conditional probability of an

event will often be higher than the event’s unconditional probability,

assuming the two events A and D are related to each other.

Let’s state more formally the conditional probability rule: {Next Slide}

The Conditional Probability Rule:
If A and B are any two events, then

( ) ( )
( )P B A

P A B
P A

|
&

.=

In words, for any two events the conditional
probability that one event occurs given that

the other even has occurred equals the
joint probability of the two events divided

by the probability of the given event.

Notice that I changed the notation to be consistent with other rules.

<Now, what is the probability of showing allergic symptoms if the respondent did not get the new

drug?>
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P A|D = P(D3A)
P D

.

But since D and   are complements we know thatD P D = 1 - P(D) = 0.20.

Our experimental results showed that P(D 3 A) = 8
100 = 0.08.

� P A|D = 0.08
0.2 = 0.4.

<Is the drug effective?>  Yes it appears so. The probability of having an allergic

reaction is cut in half.

P A|D = 0.4
P(A|D) = 0.2

The conditional probability shows us something very important:  It shows us how the probability

of an event is affected by the occurrence, or non-occurrence, of

another event. You can see how important this kind of finding

would be if you were testing a new drug, or trying to assess the

effectiveness of an economic policy, etc.

Now, let's try another experiment: Suppose we want to know the probability of rolling 2 dice

and getting a 7:

 Let
C = we got a 7
C = we did not get a 7

<What is P(C)?> P(C) = 6/36 = 1/6   {Next Slide}
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Sample Space for One Roll of Two Die

First Die

Se
co

nd
D

ie

0 1 2 3 4 5 6
0
1
2
3
4
5
6

All Elementary
events where
the sum of the
2 dice = 7.
(Event C)

P(C)= 6/36 = 1/6

<What if we know that the first die was a 4?>  What is the probability that we roll a 3 on the

second die to get our 7?> {Next Slide}

Sample Space for One Roll of Two Die

First Die

Se
co

nd
D

ie

0 1 2 3 4 5 6
0
1
2
3
4
5
6

All Elementary
events where
the first die = 4

P(C|Die 1=4)=1/6

The only elementary
event that leads to
a 7 when the first
die was a 4.

It looks as though knowing that the first die was a “4” was no help in predicting the probability of

getting a “7”. <Why Not?>
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Well, it might be because the two rolls of the dice are independent of each other.

Let’s look at the joint distribution:

1.0000.1670.1670.1670.1670.1670.167

0.1670.0280.0280.0280.0280.0280.0286

0.1670.0280.0280.0280.0280.0280.0285

0.1670.0280.0280.0280.0280.0280.0284

0.1670.0280.0280.0280.0280.0280.0283

0.1670.0280.0280.0280.0280.0280.0282

0.1670.0280.0280.0280.0280.0280.0281

654321

{Next Slide}

1 2 3 4 5 6

1 0.028 0.028 0.028 0.028 0.028 0.028 0.167

2 0.028 0.028 0.028 0.028 0.028 0.028 0.167

3 0.028 0.028 0.028 0.028 0.028 0.028 0.167

4 0.028 0.028 0.028 0.028 0.028 0.028 0.167

5 0.028 0.028 0.028 0.028 0.028 0.028 0.167

6 0.028 0.028 0.028 0.028 0.028 0.028 0.167

0.167 0.167 0.167 0.167 0.167 0.167 1.000

Se
co

nd
D

ie
(B

)

First Die (A)

( ) ( )
( )

( )
( ) ( ) ( )P B A

P A B
P A

P B A
P A

P B P C|
& .

.
. .= =

= =
=

= = = = = =
3 4

4
0 028
0167

0167 3 7
I

Ways to Roll a 7 Ways to roll a 3
when Die 1=4

And we can see that, since the probability of rolling a 3 with the second die is the
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same, no matter what the result with the first die, knowing the roll

of the first die gives us no useful information to update our

probability of getting a 7. But ... What if we wanted to know

the probability of rolling a 12 and the first die = 1?  Then the

first roll gives useful information, and the probability changes

to zero! We’ll come back to this notion of independent events in a

minute.  First, however, let’s use the conditional probability rule

to define another probability rule.

3.8. More Probability Rules

3.8.1 The General Multiplication Rule

Because we define conditional probability as:

 we can write the general multiplication rule as follows:P(A|B) = P(B&A)
P(B) ,

If A and B are any two events then {Next Slide}

P(B&A) = P(B) * P(A|B).

In words, for any two events, their joint probability equals the probability that one

of the events occurs times the conditional probability of the other

even, given that event.

The conditional probability rule and the general multiplication rule are simply

variations of each other.

3.8.2 Statistical Independence

One of the most important concepts in probability is that of statistical independence of events.

For two events, statistical independence, or more simply,

independence, is defined as follows: {Next Slide}
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Independent Events
Event A is said to be independent of event B
if the occurrence of event B does not affect

the probability that event A occurs.  In symbols,

In words, knowing whether event B has occurred
provides no probabilistic information about the

occurrence of event A.

( ) ( )| .P A B P A=

So, when two events are independent the following must hold:

3.8.3 The Special Multiplication Rule

Now, we’re in a position to produce a special version of our general multiplication rule for two

independent events.  The general multiplication rule says

{Next Slide}

  Revised 1/16/2017                                                                                             Page 35 of 46



Independence Implies

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

| |

| |

P A B
P A B P A P A S

P B

P B A
P B A P B P B S

P A

= = =

= = =

I

I

Rearranging these two equations
gives the General Multiplication
Rule:

( ) ( ) ( )
( ) ( ) ( )

| or

|

P A B P A B P B

P B A P B A P A

=

=

I

I

which implies, since
( ) ( ) ( ) ( ) ( ) ( )| |P A B P B A P A B P B P B A P A= Þ =I I

that, if A and B are independent events,
then from the definition of independence:

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

| or,

|

P A B P A B P B P A P B

P B A P B A P A P B P A

= = ·

= = ·

I

I

{Next Slide}

The Special Multiplication Rule (for Two Independent Events)

If A and B are independent events, then

and conversely, if

then A and B are independent events.  In words, two events are
independent if and only if their joint probability equals the product

of their marginal probabilities.

( ) ( ) ( )& ,P B A P B P A= ·

( ) ( ) ( )& ,P B A P B P A= ·

<So, can independent events be mutually exclusive?> No, because the probability of one event
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depends upon the occurrence, or nonoccurrence of the other.

Therefore, mutually exclusive events cannot be independent.

3.8.4 Example Problem: Smoking Study

An epidemiological study of smoking found that for three different age groups:

less than age 30 (<30)

ages 30-50

greater than 50 (>50

that half those under 30 were found to smoke.  <How do I write this probability?>

P(Sm| < 30) = 0.5

a)  If  find the joint probability that a person is under 30 and smokes.P(< 30) = 0.5

<What, excactly, in probability terms are we trying to find?>

P(Sm 3< 30).

<What information do we have?>

P(Sm| < 30) = 0.5
P(< 30) = 0.5

<How do we use this information?>  Use the formula for the

intersection of two events (or the General Multiplication Rule)

P(Sm 3< 30) = P(Sm| < 30)P(< 30)
P(Sm 3< 30) = 0.5 % 0.5 = 0.25.

b)  <Now, are the probabilities of smoking and being under age 30 independent or dependent?>

We don’t have enough information to tell.

However, if I gave you the following information, what would you say, dependent or

  Revised 1/16/2017                                                                                             Page 37 of 46



independent?>

  Age and smoking are dependent events because the conditional

P(Sm| < 30) = 0.5
P(Sm|30 - 50) = 0.5
P(Sm| > 50) = 0.25

probabilities vary by age.

c)  Now, if the probability of a person’s being in a particular age group are:

   Find, P(Sm), the unconditional probability that a person smokes if

P(< 30) = 0.50
P(30 - 50) = 0.25
P(> 50) = 0.25

randomly selected from the population.

<What are we trying to find here?> The marginal probability of Sm.  Since the age groups are

mutually exclusive, we have:

P(Sm) = P(Sm3< 30) + P(Sm3 30 - 50) + P(Sm 3> 50)
= P(Sm| < 30) * P(< 30) + P(Sm|30 - 50) * P(30 - 50) + P(Sm| > 50) * P(> 50)
= 0.5 % 0.5 + 0.5 % 0.25 + 0.25 % 0.5

P(Sm) = 0.25 + 0.13 + 0.06 = 0.44

The marginal probability of an event is the sum of the intersections of that event

with all possible states of another event. This is an example of the

Total Probability Rule, which I'll now discuss.

3.8.5 The Rule of Total Probability

Define: Exhaustive Events are exhaustive because at least one of them must occur.  E.g.,

Governor’s at a conference must be either Republican, Democrat or

Independent.  Exhaustive events are also mutually exclusive, since

only one category can occur at a time.

Look at the following sample space, totally occupied by an event A which can take
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on only one of three values:

A1 A2 A3

Sample space, S, is completely filled
by event A.

{Boone:  Simply click on the above slide in the presentation, and the following object will

materialize}

Now, let’s add a second event, B, that can occur in conjunction with any of the

three values of A {Next Slide} :

A1 A2 A3

Sample space, S, is completely filled
by event A.

B

A1&B A2&B A3&B

Now, B can occur in conjunction with one, and only one of the events A1, A2, or

A3.  So, the probability of B is:
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3.9. Bayes’s Rule

3.9.1 Bayes’s Theorem:  First Pass

Using the probability notions that we’ve just developed, we can represent the probability that two

events A and B occur simultaneously in the following manner:

P(A 3 B) = P(B|A)P(A) = P(A|B)P(B)

Then, using the last two terms of this equality and rearranging we can express the

probability that B occurs, given that A occurred in terms of the

P(B) = P(A1&B) + P(A2&B) + P(A3&B) .

But, the general multiplication rule allows us to substitute for each

term on the right side of this equation:

P(B) = P(A1 ) * P(B|A1 ) + P(A2 ) * P(B|A2 ) + P(A3 ) * P(B|A3 )

Or, we can write:

{Next Slide}

The Rule of Total Probability
Suppose that Events A1, A2, ..., Ak

are mutually exclusive and exhaustive;
that is, exactly one of the events must
occur.  Then, for any event B,

( ) ( ) ( ) ( )
1 1

| .
k k

j j j
j j

P B P A B P A P B A
= =

= = ·å åI
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probability that A occurs given B:

P(A|B) = P(B|A)*P(A)
P(B) .

This is a very simple version of Bayes’s Rule (or Theorem).  This theorem, which

follows immediately from our Rules (or Axioms) of probability is

enormously important to that group of statisticians who call

themselves “Bayesians”.

Bayesians argue as follows:  Before we go out to collect data on a phenomenon,

we usually have a prior opinion (subjective) as to what the value of

that phenomenon is.

This prior opinion is represented by P(A). After we have actually collected a

sample, we have to modify our opinions in light of sample evidence,

right?

Bayes Rule give us a method by which we can consistently modify (update) our

prior opinion.

We’ll come back to this discussion after we develop a more complete

understanding of Bayes Rule.

3.9.2 Bayes’s Rule Derived

Using the rule of total probability we can derive Bayes’s rule.  For simplicity, let’s consider three

events A1, A2, and A3, that are mutually exclusive and exhaustive

and let B be any event.  For Bayes’s rule we assume that the

following probabilities are known: {Next Slide}
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( ) ( ) ( )
( ) ( ) ( )
P A P A P A

P B A P B A P B A
1 2 3

1 2 3| | |

Our goal is to use these known probabilities to find the following probabilities:

{Next Slide}

( ) ( ) ( )P A B P A B P A B1 2 3| | |

From the conditional probability rule, we know that we can express each of these

conditional probabilities as: {Next Slide}

( ) ( )
( )
&

| for 1,3.i
i

P B A
P A B i

P B
= =

From the Conditional Probability Rule, we know that:

Next, let’s use what we’ve established through our previous work to alter this

equation.  Apply the general multiplication rule to the numerator:

{Next Slide}

( ) ( )
( )
&

| 1,3.i
i

P B A
P A B i

P B
= =

Next, apply the General Multiplication Rule to the Numerator:

( ) ( ) ( )
( )

|
| 1,3.i i

i

P A P B A
P A B i

P B
·

= =

Prior probability

Posterior probability

That gives us:
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{Next Slide}

Finally, apply the rule of Total Probability in the denominator to
give us Bayes's Rule:

( ) ( ) ( )
( ) ( )

1

|
|  1,3

|

i i
i k

j j
j

P A P B A
P A B i

P A P B A
=

·
= =

·å
Bayes’s Rule turns out to be an extraordinarily useful probability theorem.  It probably doesn’t

mean a thing to you, right now, but I hope you’ll see its utility

shortly.

3.9.3 An example using Bayes’s Rule  (This is from the Mendenhall text!)

The Nickel and Dime department store is considering adopting a new credit management policy in

an attempt to reduce the number of credit customers who default

on their payments. The credit manager has suggested that in the

future credit should be discontinued to any customer who has twice

been a week or more late with his monthly installment payment. He

supports his claim by noting that past credit records show that 90%

of all those defaulting on their payments were late with at least two

monthly payments.

Suppose from our own investigation we have found that two per cent of all credit

customers actually default on their payments and that 45% those

who have not defaulted have had at least two "late" monthly

payments.

Find the probability that a customer with two or more late payments will actually

default on his payments and, in light of this probability, criticize the
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credit manager's plan.

Define: L -- a credit customer is two or more weeks late with at least two

monthly payments,

D: a credit customer defaults on his payments.   is theD

complement of D.

<What do we wish to find out?> The probability that a customer who has paid late

at least twice will default.

<How do we represent this symbollically?> P(D|L)

<What information do we have to work on?>

P(L|D) = 0.9
P(D) = 0.02 (the prior)
P L|D = 0.45

Now, we can use Baye's Theorem here:

P(D|L) = P(L|D)*P(D)
P(L)

= P(L|D)*P(D)

P(L|D)*P(D)+P L|D *P D

=
(0.9%0.02)

(0.9%0.02)+(0.45%0.98)

= 0.018
0.018+0.441 = 0.0392

The probability that a late payer will default is 0.0392.

<Would you say that the credit manager's idea is a good one?> No, for every 25

late payers only one, on the average, will default, and 24 good

credit customers will be lost.

3.9.4 Another Example of  Bayes's Rule (Another Smoking Study)

According to the American Lung association 7.0% of the population has lung disease.  Of those
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having lung disease, 90% are smokers; of those not having lung

disease, 25.3% are smokers. Determine the probability that a

randomly selected smoker has lung disease.

What information do we have available:

v Let Sm indicate that a randomly selected person is a smoker.
v Let L1 represent the event that the person selected has no lung disease.
v Let L2 represent the event that the person selected has lung disease.

Note that L1 and L2 are complementary, which implies that they are mutually

exclusive  and exhaustive.

Now, what (in symbols) do we want to know?

P(L2 |Sm)

What information do we have:

P(L2 ) = 0.07
P(Sm|L2 ) = 0.90
P(Sm|L1 ) = 0.253

Now, write an expression (symbolically) that expresses what we want to know in

terms of what we know:

P(L2 |Sm) = P(Sm|L2 )*P(L2)
P(Sm|L1)*P(L1)+P(Sm|L2)*P(L2)

= 0.9%0.07
(0.9%0.07)+(0.253%0.930) = 0.211.

Wow, look at this:  If we know that a person is a smoker our estimate of the

probability that he/she has lung disease triples!  The additional

evidence of his/her smoking means that the probability of lung

disease changes from fairly rare (7%) to not unexpected (21.1%)

Bayes's Rule allows us to reduce our uncertainty about an event by (in this case) a
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considerable amount.

3.9.5 Another Bayes's Theorem Problem (Unemployment)

In a population of workers suppose 40% are grade school graduates, 50% are high school

graduates, and 10% are college graduates.  Among the grade

school graudates, 10% are unemployed, among the high school

graduates 5% are unemployed and among the college graduates 2%

are unemployed.

If a worker is chosen at random and found to be unemployed, what is the

probability that he is a college graduate?

Information:

P(G) = 0.4
P(H) = 0.5
P(C) = 0.1

} mutually exclusive(this is a prior distributon on education)

Also:

P(U|G) = 0.1
P(U|H) = 0.05
P(U|C) = 0.02

<What do we want to find out?> P(C|U)

<What theorem can we apply?>  Bayes's!

P(C|U) = P(U|C)*P(C)
P(U|G)*P(G)+P(U|H)*P(H)+P(U|C)*P(C) =

0.02%0.1
(0.1%0.4)+(0.05%0.5)+(0.02%0.1) =

0.002
0.067 = 0.03.

So, our prior probability of finding a college graduate started out at 10%, but after

finding out that the person is unemployed, the probability that he is

a college graduate drops to 3%.
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