CHAPTER 1 3

Dummy Dependent Variable
Techniques

13.1  The Linear Probability Model
13.2  The Binomial Logit Model
13.3 Other Dummy Dependent Variable Techniques

13.4 Summary and Exercises

Until now, our discussion of dummy variables has been restricted to dummy
independent variables. However, there are many important research topics
for which the dependent variable is appropriately treated as a dummy, equal
only to zero or one.

In particular, researchers analyzing consumer choice often must cope with
dummy dependent variables (also called qualitative dependent variables).
For example, how do high school students decide whether to go to college?
What distinguishes Pepsi drinkers from Coke drinkers? How can we convince
people to commute using public transportation instead of driving? For an
econometric study of these topics, or of any topic that involves a discrete
choice of some sort, the dependent variable is typically a dummy variable.

In the first two sections of this chapter, we'll present two frequently used
ways to estimate equations that have dummy dependent variables: the linear
probability method and the binomial logit model. In the last section, we'll
briefly discuss two other useful dummy dependent variable techniques: the
binomial probit model and the multinomial logit model.

13.1 The Linear Probability Model

13.1.1 What Is a Linear Probability Model?

The most obvious way to estimate a model with a dummy dependent vari-
able is to run OLS on a typical linear econometric equation. A linear proba-
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bility model is just that, a linear-in-the-coefficients equation used to explain
a dummy dependent variable:

D; = By + B1Xy; + BXyi + ¢ (13.1)

where D; is a dummy variable and the Xs, Bs, and e are typical independent
variables, regression coefficients, and an error term, respectively.

For example, suppose you're interested in understanding why some state
legislatures voted to ratify the Equal Rights Amendment (ERA) to the Consti-
tution and others did not. In such a model, the appropriate dependent vari-
able would be a dummy, for example D; equal to one if the ith state ratified
the ERA and equal to zero otherwise. If we hypothesize that states with a high
percentage of females and a low percentage of Republicans would be likely to
have approved the amendment, then a linear probability model of ERA vot-
ing by state would be:

Di = Bo + B1F + ByR; + ¢

where:  D; = 1 if the ith state ratified the ERA, 0 otherwise
F; = females as a percent of the ith state’s population
i = Republicans as a percent of the ith state’s registered voters

The term linear probability model comes from the fact that the right-hand side of
the equation is linear, while the expected value of the left side is a probability.
Let's discuss more thoroughly the concept that this equation measures a proba-
bility. It can be shown that the expected value of D; equals the probability that
D; will equal one.! If we define P; as the probability that D; equals one, then
this is the same as saying that the expected value of D; equals P;. Since Equation
13.1 specifies this choice as a function of X1 X5j, this can be formally stated as:

E[D;|X}; Xqi] = P, (13.2)

We can never observe the probability P;, however, because it reflects the state
of mind of a decision maker before a discrete choice is made. After a choice is
made, we can observe only the outcome of that choice, and so the dependent

1. The expected value of a variable equals the sum of the products of each of the possible values
the variable can take times the probability of that value occurring. If P; is defined as the proba-
bility that D; will equal one, then the probability that D; will equal zero is (1 — P;), since D;
can take on only two values, Thus, the expected value of Di=Pi-1+(1~-P)-0= P;, the
Probability that D; equals one.
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variable D; can take on the values of only zero or one. Thus, even though the
expected value (P;) can be anywhere from zero to one, we can only observe
the two extremes (0 and 1) in our dependent variable (D;).

13.1.2 Problems with the Linear Probability Model

Unfortunately, the use of OLS to estimate the coefficients of an equation with
a dummy dependent variable encounters four major problems:

1. The error term is not normally distributed. Because the dependent variable
takes on only two values, the error term is binomial, and Classical As-
sumption VII is violated. This flaw makes hypothesis testing unreliable.

2. The error term is inherently heteroskedastic. The variance of €; equals
P, - (1 — P;), where P; is the probability that D; equals 1. Since P; can
vary from observation to observation, so too can the variance of ;.
Thus the variance of ; is not constant, and Classical Assumption V is
violated.

3. R2 is not an accurate measure of overall fit. For models with a dummy de-
pendent variable, R2 tells us very little about how well the model ex-
plains the choices of the decision makers. To see why, take a look at
Figure 13.1. D; can equal only 1 or 0, but D, must move in a continu-
ous fashion from one extreme to the other. This means that D; is likely
to be quite different from D; for some range of X;. Thus, R? is likely to
be much lower than 1 even if the model actually does an exceptional
job of explaining the choices involved. As a result, R? (or R?) should
not be relied on as a measure of the overall fit of a model with a
dummy dependent variable.

4. D,- is not bounded by 0 and 1. Since the expected value of Dy is a proba-
bility, we'd expect f)i to be limited to a range of 0 to 1. After all, the
prediction that a probability equals 2.6 (or —2.6, for that matter) is al-
most meaningless. However, take another look at Equation 13.1. De-
pending on the values of the Xs and the [§>s, the right-hand side might
well be outside the meaningful range. For instance, if all the Xs and Bs
in Equation 13.1 equal 2.0, then I5i equals 10.0, substantially greater
than 1.0.

Luckily, there are potential solutions to the first three problems cited above.
First, the nonnormality problem can be ignored in coefficient estimation
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‘;ﬁi =By + X + B.X,

[ ST

Xii

(Holding X5; Constant)

Figure 13.1 A Linear Probability Model

In a linear probability model, all the observed D;s equal either zero or one but ﬁi moves
linearly from one extreme to the other. As a result, R? is often quite low even if the model
does an excellent job of explaining the decision maker’s choice. In addition, exception-
ally large or small values of Xy (holding X,; constant), can produce values of D; outside
the meaningful range of zero to one.

because Classical Assumption VII is not used to prove the Gauss-Markov
Theorem.

Second, a solution to the heteroskedasticity problem is to use Weighted
Least Squares. Recall that we know that the variance of €; equals
P; - (1 — P;). As shown in Chapter 10, if we were to divide the equation

through by P - (1 — P;), then the variance of the error term would no
longer be heteroskedastic. Although we don't know the actual value of P;, we
do know that P; equals the expected value of D;. Thus, if we estimate Equa-
tion 13.1 and obtain D;, we can use D; as an estimate of P;. To run Weighted
Least Squares, we'd then calculate:
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z,=VD;- (1 -Dy) (13.3)

divide Equation 13.1 by Z;, and estimate the new equation with OLs.2
Third, an alternative to R? is RIZJ, the percentage of the observations in the
sample that a particular estimated equation explains correctly. To use this ap-
proach, consider a D, = .5 to predict that D; = 1 and a D, < .5 to predict
that D; = 0, compare this prediction with the actual D;, and then compute:

number of observations “predicted” correctly

R

2 —_— —— —_—
P total number of observations (n) (13.4)

Since R2 is not used universally, we'll calculate and discuss both RZ and R‘E
throughout this chapter.

For most researchers, therefore, the major difficulty with the linear proba-
bility model is the unboundedness of the predicted D;s. Take another look at
Figure 13.1 for a graphical interpretation of the situation. Because of the lin-
ear relationship between the X;s and D, D; can fall well outside the relevant
range of 0 to 1. Using the linear probability model, despite this unbounded-
ness problem, may not cause insurmountable difficulties. In particular, the
signs and general significance levels of the estimated coefficients of the linear
probability model are often similar to those of the alternatives we will dis-
cuss later in this chapter.

One simplistic way to get around the unboundedness problem is to assign
D, = 1.0 to all values of D, above one and D; = 0.0 to all negative values. This
approach copes with the problem by ignoring it, since an observation for which
the linear probability model predicts a probability of 2.0 has been judged to be
more likely to be equal to 1.0 than an observation for which the model predicts
a 1.0, and yet they are lumped together. What is needed is a systematic method
of forcing the D;s to range from 0 to 1 in a smooth and meaningful fashion.
We'll present such a method, the binomial logit, in Section 13.2.

13.1.3 An Example of a Linear Probability Model

Before moving on to investigate the logit, however, let's take a look at an ex-
ample of a linear probability model: a disaggregate study of the labor force
participation of women.

2. Note that when D; is quite close to O or 1, D;- (1 - D;) is extremely smail and X;/Z; is huge.
Also note that when D; is outside the 0-1 range, D; * (1 — D;) is negative and Z; is undefined.
See R. G. McGilvray, “Estimating the Linear Probability Function,” Econometrica, 1970, PP-
775-776. Some researchers arbitrarily drop all such observations to avoid the resulting estima-
tion problems. We think that a better alternative is to impose an arbitrary floor, say 0.02, on
bi - (1 — Dy). Either way, WLS is not efficient.
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A person is defined as being in the labor force if she either has a job or is
actively looking for a job. Thus, a disaggregate (cross-sectional by person)
study of women’s labor force participation is appropriately modeled with a
dummy dependent variable:

D; = 1 if the ith woman has or is looking for a job,
0 otherwise (not in the labor force)

is unmarried and well educated is much more likely to be in the labor force
than her opposite:

~
D; = f(M;, §;) + ¢

where:  M; = 1 if the ith woman is married and 0 otherwise
§; = the number of years of schooling of the ith woman

The data are presented in Table 13.1. The sample size is limited to 30 in
order to make it easier for readers to estimate this example on their own. Un-
fortunately, such a small sample will make hypothesis testing fairly unreli-
able. Table 13.1 also includes the age of the ith woman for use in Exercises 8
and 9. Another typically used variable, O; = other income available to the ith
woman, is not available for this sample, introducing possible omitted vari-
able bias.

If we choose a linear functional form for both independent variables,
we've got a linear probability model:

D; = By + BiM; + B,S; + €; (13.5)

3. See James P, Smith and Michael P. Ward, “Time-Series Growth in the Female Labor Force,”
Journal of Labor Economics, 1985, pp. 559-590. Smith and Ward include a number of estimated
logits in their work.
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TABLE 13.1 DATA ON THE LABOR FORCE PARTICIPATION OF WOMEN

Observation # Di Mi Ai Si [ji 6i(1 - [jl) Zi
1 1.0 0.0 31.0 16.0 1.20 0.020 0.141
2 1.0 1.0 34.0 14.0 0.63 0.231 0.481
3 1.0 1.0 41.0 16.0 0.82 0.146 0.382
4 0.0 0.0 67.0 9.0 0.55 0.247 0.497
5 1.0 0.0 25.0 12.0 0.83 0.139 0.374
6 0.0 1.0 58.0 12.0 0.45 0.247 0.497 .
7 1.0 0.0 45.0 14.0 1.01 0.020 0.141
8 1.0 0.0 55.0 10.0 0.64 0.228 0.478
9 0.0 0.0 43.0 12.0 0.83 0.139 0.374
10 1.0 0.0 55.0 8.0 0.45 0.248 0.498
11 1.0 0.0 25.0 11.0 0.73 0.192 0.439
12 1.0 0.0 41.0 14.0 1.01 0.020 0.141
13 0.0 1.0 62.0 12.0 0.45 0.247 0.497
14 1.0 1.0 51.0 13.0 0.54 0.248 0.498
15 0.0 1.0 39.0 9.0 0.17 0.141 0.376
16 1.0 0.0 35.0 10.0 0.64 0.228 0.478
17 1.0 1.0 40.0 14.0 0.63 0.231 0.481
18 0.0 1.0 43.0 10.0 0.26 0.194 0.440
19 0.0 1.0 37.0 12.0 0.45 0.247 0.497
20 1.0 0.0 27.0 13.0 0.92 0.069 0.263
21 1.0 0.0 28.0 14.0 1.01 0.020 0.141
22 1.0 1.0 48.0 12.0 0.45 0.247 0.497
23 0.0 1.0 66.0 7.0 -0.01 0.020 0.141
24 0.0 1.0 44.0 11.0 0.35 0.229 0.479
25 0.0 1.0 21.0 12.0 0.45 0.247 0.497
26 1.0 1.0 40.0 10.0 0.26 0.194 0.440
27 1.0 0.0 41.0 15.0 1.11 0.020 0.141
28 0.0 1.0 23.0 10.0 0.26 0.194 0.440
29 0.0 1.0 31.0 11.0 0.35 0.229 0.479
30 1.0 1.0 44.0 12.0 0.45 0.247 0.497

Note: D;(1 — D;) has been set equal to 0.02 for all values of D; less than 0.02 or greater than 0.98.
filename WOMEN13 (In this datafile D is represented by J.)

D; = —0.28 — 0.38M; + 0.09S; (13.6)
_(0.15)  (0.03)
n =30 RZ = 32 Rg = .80

How do these results look? At first glance, they look terrific. Despite the small
sample and the possible bias due to omitting O;, both independent variables
have estimated coefficients that are significant in the expected direction. In



CHAPTER 13 = DUMMY DEPENDENT VARIABLE TECHNIQUES 441

addition, the R? of .32 js fairly high for a linear probability model (since D;
equals only 0 or 1, it's almost impossible to get a R2 much higher than .70).
Further evidence of good fit is the fairly high Rg of .80, meaning that 80 per-
cent of the choices were predicted “correctly” by Equation 13.6.

We need to be careful when we interpret the estimated coefficients in
Equation 13.6, however. The slope coefficient in a linear probability model

However, Equation 13.6 is far from perfect. Recall that the erTor term is in-
herently heteroskedastic, that hypothesis testing is unreliable in such a sma]]
sample, that R? is not an accurate measure of fit, and that one or more rele-
vant variables have been omitted. While we can do nothing about some of
these problems, there is a solution to the heteroskedasticity problem:
Weighted Least Squares (WLS).

To use WLS, we take the bi from Equation 13.6 and calculate
Z, = ﬁi ‘(1 - ﬁi), as in Equation 13.3 [taking care to impose a floor of
0.02 on ﬁi (1 - ﬁi) as suggested in footnote 2.] We then divide Equation
13.5 through by Z;, obtaining:

Di/Zi = ag + By(1/2;) = PiMi/Z; + B,8;/Z; + v (13.7)

where u; is a nonheteroskedastic eITor term = €;/Z;. Note that since Z; is not
an independent variable in Equation 13.6, we have chosen to add oy, a con-
stant term, to Equation 13.7 to avoid violating Classical Assumption II (as dis-
cussed in Chapter 9). If we now estimate Equation 13.7 with OLS, we obtain:

D,/z;

0.18 - 0.21(1/z,) — 0.39M;/Z; + 0.08S;/z; (13.8)
(0.15) (0.02)
n = 30 R2 = 86 Rg=.83
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tion by the same number (Z;) causes some spurious correlation, especially
when some of the Z, values are quite small. As evidence, note that Rlz) is only
slightly higher in Equation 13.8 than in Equation 13.6 even though R?
jumped from .32 to .86.

To make it easier for the reader to reproduce the WLS procedure, the values
forD; - (1 - D,) and Z; have been included in Table 13.1. Also included are
the D;s from Equation 13.6; note that D; is indeed often outside the mean-
ingful range of 0 and 1, causing most of the problems cited earlier. To attack
this problem of the unboundedness of D;, however, we need a new estima-

tion technique, so let’s take a look at one.

13.2 The Binomial Logit Model

To avoid the possibility thata prediction of D; might be outside the probabil-
ity interval of 0 to 1, we no longer model D; directly. Instead, we model the
ratio D;/(1 — D;). This ratio is the likelihood, or odds,* of obtaining a suc-
cessful outcome (D; = 1). If we take the log of this ratio, we have the left
side of the equation that has become the standard approach to dummy de-
pendent variable analysis: the binomial logit.

13.2.1 What Is the Binomial Logit?

The binomial logit is an estimation technique for equations with dummy
dependent variables that avoids the unboundedness problem of the linear
probability model by using a variant of the cumulative logistic function:

D;
ln([T—_DT]) =By + BiXyi + BXai T & (13.9)

where D; is a dummy variable. The expected value of D; continues to be P;,
the probability that the ith person will make the choice described by D; = 1.
Consequently, the dependent variable of Equation 13.9 can be thought of as
the log of the odds that the choice in question will be made.

How does the logit avoid the unboundedness problem of the linear prob-
ability model? It turns out that both sides of Equation 13.9 are unbounded.
To see this, note that if D; = 1, then the left-side of Equation 13.9 becomes:

4. Odds refer to the ratio of the number of times a choice will be made divided by the numi‘:'er
of times it will not. In today's world, odds are used most frequently with respect to sportng
events, such as horse races, on which bets are made.
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D; 1
ln(m) = ln(a) = (13.10)
Similarly, if D; = 0:
D; 0
ln(m) = ln(T) = — (13.11)

because the log of zero approaches negative infinity.

Are the Dis produced by a logit now limited by zero and one? The answer
is yes, but to see why we need to solve Equation 13.9 for D;. It can be shown®
that Equation 13.9 is equivalent to:

1
D:. = .
Yo e "[Bo+BiXii+ BoXai+€] (13.12)

Take a close look at Equation 13.12. What is the largest that D; can be? Well,
ifBg + B1Xy; + ByXy; equals infinity, then:

Dj=———=1=1 (13.13)

because e to the minus infinity equals zero. What's the smallest that ﬁi can
be? If By + B;Xy; + B,X,; equals minus infinity, then:

Di=——=1=0 (13.14)

Thus, ﬁi is bounded by one and zero. As can be seen in Figure 13.2, ﬁi ap-
proaches one and zero very slowly (asymptotically). The binomial logit
model therefore avoids the major problem that the linear probability model
encounters in dealing with dummy dependent variables, In addition, the
logit is quite satisfying to most researchers because it turns out that real-
world data often are described well by S-shape patterns like that in Figure
13.2.

Logits cannot be estimated using OLS. Instead, we use maximum likeli-
hood, an iterative estimation technique that is especially useful for equations
that are nonlinear in the coefficients. Maximum likelihood (ML) estimation
is inherently different from least squares in that it chooses coefficient esti-

5. Those interested in this proof should see Exercise 4.
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D,
Linear Probability Model
(for comparison purposes)
ﬁi = 1
Logit
: Lo P ) = o+ Xy + BaXa
1>D;>0 =D o T P1A& T P2A2i
1
f)i = O P
Xy
(Holding X, Constant)

Figure 13.2 D; Is Bounded by Zero and One in a Binomial Logit Model

In a binomial logit model, ﬁi is nonlinearly related to X;, so even exceptionally large or
small values of X;;, holding X; constant, will not produce values of D; outside the mean-

ingful range of zero to one.

mates that maximize the likelihood of the sample data set being observed.® In-
terestingly, OLS and ML estimates are not necessarily different; for a linear
equation that meets the Classical Assumptions (including the normality as-
sumption), ML estimates are identical to the OLS ones.

One of the reasons that maximum likelihood is used is that ML has a
number of desirable large sample properties; ML is consistent and asymptoti-
cally efficient (unbiased and minimum variance for large samples). With very

6. Actually, the ML program chooses coefficient estimates that maximize the log of the proba-
bility (or likelihood) of observing the particular set of values of the dependent variable in the
sample (Yy, Yo . . ., Yy) for a given set of Xs. For more on maximum likelihood, see Robert S.
Pindyck and Daniel L. Rubinfeld, Economic Models and Economic Forecasts (New York: McGraw-
Hill, 1998), pp. 51-53 and 329-330.
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large samples, ML has the added advantage of producing normally distrib-
uted coefficient estimates, allowing the use of typical hypothesis testing tech-
niques. As a result, sample sizes for logits should be substantially larger than
for linear regressions. Some researchers aim for samples of 500 or more.

It's also important to make sure that a logit sample contains a reasonable

a logit model,”? even though it might do so in a linear regression.
The maximum likelihood computer program is applied to a logit that has

Once the binomial logit has been estimated, hypothesis testing and
econometric analysis can be undertaken in much the same way as for linear
equations. When interpreting coefficients, however, be careful to recall that
they represent the impact of a one-unit increase in the independent variable
in question, holding the other explanatory variables constant, on the log of
the odds of a given choice, not on the probability itself (as was the case with
the linear probability model).

For instance, B, in Equation 13.9 measures the impact of a one-unit increase
in X; on the log of the odds of a given choice, holding X, constant. As a result,
the absolute sizes of estimated logit coefficients tend to be quite different from
the absolute sizes of estimated linear probability model coefficients for the
same variables, Interestingly, as mentioned above, the signs and significance
levels of the estimated coefficients from the two models often are similar,

Measuring the overall fit, however, is not quite as straightforward. Recall
from Chapter 7 that since the functional form of the dependent variable has
been changed, R? cannot be used to compare the fit of a logit with an other-
wise comparable linear probability model. One way around this difficulty is to
use the quasi-R? approach of Chapter 7 (a nonlinear estimate of R?) to com-

7. The constant term, however, needs to be adjusted. Multiply fio by [in(p;) ~ In (p2)], where
Py is the proportion of the observations chosen if D; = 1 and p, is the proportion of the obser-
vations chosen if D;i = 0. See G. S. Maddala, Limited-Dependent and Qualitative Variables in
Econometrics (Cambridge: Cambridge University Press, 1983), pp. 90-91.
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pare the two fits. However, this quasi-R? shares the general faults inherent in
using R? with equations with dummy dependent variables. A better approach
might be to use the percentage of correct predictions, Rlz), from Equation 13.4.

To allow a fairly simple comparison between the logit and the linear prob-
ability model, let's estimate a logit on the same women’s labor force partici-
pation data that we used in the previous section. The OLS estimate of that
model, Equation 13.6, was:

D, = —0.28 — 0.38M; + 0.09S; (13.6)
_(015)  (0.03)
n = 30 R? = .32 RS = .80

where:  D; = 1 if the ith woman is in the labor force, 0 otherwise
M; = 1 if the ith woman is married, 0 otherwise
S, = the number of years of schooling of the ith woman

If we estimate a logit on the same data (from Table 13.1) and the same inde-
pendent variables, we obtain®:

— T

D.

ln([—l_;Di) = —5.89 — 2.59M; + 0.695; (13.15)
i (1.18)  (0.31)
t=—219 2.19

n = 30 Rlz) = .80 iterations = 5

Let's compare Equations 13.6 and 13.15. As expected, the signs and general
significance of the slope coefficients are the same. Note, however, that the ac-
tual sizes of the coefficients are quite different because the dependent vari-
able is different. The coefficient of M changes from —0.38 to —2.59! Despite
these differences, the overall fits are roughly comparable, especially after tak-
ing account of the different dependent variables and estimation techniques.
In this example, then, the two estimation procedures differ mainly in that the
logit does not produce ﬁis outside the range of zero and one.

However, if the size of the sample in this example is too small for a linear
probability model, it certainly is too small for a logit, making any in-depth
analysis of Equation 13.15 problematic. Instead, we're better off finding an
example with a much larger sample.

8. Equation 13.15 has the log of the odds as its dependent variable, but the maximum like‘li-
hood computer estimation program that produces the B estimates uses a functional form with
D; as the dependent variable (similar to Equation 13.12).
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13.2.2 An Example of the Use of the Binomial Logit

For a more complete example of the binomial digit, let’s look at a model of
the probability of passing the California State Department of Motor Vehicles
drivers’ license test. To obtain a license, each driver must past a written and a
behind-the-wheel test. Even though the tests are scored from 0 to 100, all that
matters is that you pass and get your license.

Since the test requires some boning up on traffic and safety laws, driving
students have to decide how much time to spend studying. If they don't
study enough, they waste time because they have to retake the test. If they
study too much, however, they also waste time, because there's no bonus for
scoring above the minimum, especially since there is no evidence that doing
well on the test has much to do with driving well after the test (this, of
course, might be worth its own econometric study).

Recently, two students decided to collect data on test takers in order to
build an equation explaining whether someone passed the Department of
Motor Vehicles test. They hoped that the model, and in particular the esti-
mated coefficient of study time, would help them decide how much time to
spend studying for the test. (Of course, it took more time to collect the data
and run the model than it would have taken to memorize the entire traffic
code, but that’s another story.)

After reviewing the literature, choosing variables, and hypothesizing signs,
the students realized that the appropriate functional form was a binomial
logit because their dependent variable was a dummy variable:

{ 1 if the ith test taker passed the test on the first try
! 0 if the ith test taker failed the test on the first try

Their hypothesized equation was:

+ + + +
Di = f(Ai, Hi’ Ei’ Cl) + Gi

where:  A; = the age of the ith test taker
H; = the number of hours the ith test taker studied (usually less
than one hour!)
E; = a dummy variable equal to 1 if the ith test taker’s primary
language is English, 0 otherwise
C; = a dummy variable equal to 1 if the ith test taker has any col-
lege experience, 0 otherwise
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After collecting data from 480 test takers, the students estimated the follow-
ing equation:

/\
D.
ln(ﬁ) = — 118 + 0.0114; + 2.70H; + 1.62E; + 3.97C;
: (0.009) (0.54) (0.34) (0.99)
t=1.23 4.97 4.65 4.00

n = 480 R3 = .74 iterations = 5 (13.16)

Note how similar these results look to a typical linear regression result. All
the estimated coefficients have the expected signs, and all but one are signifi-
cantly different from zero. Remember, though, that the coefficient estimates
have different meanings than in a linear regression model. For example, 2.70
is the impact of an extra hour of studying on the log of the odds of passing
the test, holding constant the other three independent variables. Note that
Rg is.74, indicating that the equation correctly “predicted” almost three
quarters of the sample based on nothing but the four variables in Equation
13.16.

And what about the two students? Did the equation help them? How
much did they end up deciding to study? They found that given their ages,
their college experience, and their English-speaking backgrounds, the ex-
pected value of D; for each of them was quite high, even if H; was set equal to
zero. So what did they actually do? They studied for a half hour “just to be on
the safe side” and passed with flying colors, having devoted more time to
passing the test than anyone else in the history of the state.

13.3 Other Dummy Dependent Variable Techniques

Although the binomial logit is the most frequently used estimation tech-
nique for equations with dummy dependent variables, it's by no means the
only one. In this section, we'll mention two alternatives, the binomial probit
and the multinomial logit, that are useful in particular circumstances. Our
main goal is to briefly describe these estimation techniques, not to cover
them in any detail.”?

9. For more, see G. S. Maddala, Limited Dependent Variables and Qualitative Variables in Econo-
metrics (Cambridge: Cambridge University Press, 1983) and T. Amemiya, “Qualitative Re-
sponse Models: A Survey,” Journal of Economic Literature, 1981, pp. 1483-1536. These surveys
also cover additional techniques, like the Tobit model, that are useful with bounded dependent
variables or other special situations.
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13.3.1 The Binomal Probit Mode]

Z;
l VZ"IT —co
where: P; = the probability that the dummy variable D;=1
Zi =By + B1Xy; + BoXy;
§ = astandardized normal variable

e~5%/2 gg (13.17)

As different as this probit looks from the logit that we examined in the pre-
vious section, it can be rewritten to look quite familiar-

Zi=F(p) = Bo + B1Xy; + BoXy; (13.18)

niques to the model in the form of Equation 13.17, but the results often are
presented in the format of Equation 13.18.

The fact that both the logit and the probit are cumulative distributive func-
tions means that the two have similar properties. For example, a graph of the
probit looks almost exactly like the logit in Figure 13.2. In addition, the pro-
bit has the same requirement of a fairly large sample before hypothesis test-
ing becomes meaningful. Finally, R2 continues to be of questionab]e value as
a measure of overall fit.

From a researcher'’s point of view, the biggest differences between the two
models are that the probit is based on the cumulative normal distribution

449
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“ T
Z; = F}(P) = —3.44 — 1.44M; + 0.405; (13.19)
(0.62)  (0.17)
n = 30 Rs = .80 iterations = 5

Compare this result with Equation 13.15 from the previous section. Note
that except for a slight difference in the scale of the coefficients, the logit and
probit models provide virtually identical results in this example.

13.3.2 The Multinomial Logit Model

In many cases, there are more than two qualitative choices available. In some
cities, for instance, a commuter has a choice of car, bus, or subway for the trip
to work. How could we build and estimate a model of choosing from more
than two different alternatives?

One answer is to hypothesize that choices are made sequentially and to
model a multichoice decision as a series of binary decisions. For example, we
might hypothesize that the commuter would first decide whether or not to
drive to work, and we could build a binary model of car versus public trans-
portation. For those commuters who choose public transportation, the next
step would be to choose whether to take the bus or the subway, and we could
build a second binary model of that choice. This method, called a sequential
binary logit, is cumbersome and at times unrealistic, but it does allow a
researcher to use a binary technique to model an inherently multichoice
decision.

If a decision between multiple alternatives is truly made simultaneously, a
better approach is to build a multinomial logit model of the decision. A
multinomial logit model is an extension of the binomial logit technique
that allows several discrete alternatives to be considered at the same time. If
there are n different alternatives, we need n — 1 dummy variables to describe
the choice, with each dummy equalling one only when that particular alter-
native is chosen. For example, D,; would equal one if the ith person chose al-
ternative number 1 and would equal zero otherwise. As before, the probabil-
ity that D,; is equal to one, Py;, cannot be observed.

In a multinomial logit, one alternative is selected as the “base” alternative,
and then each other possible choice is compared to this base alternative with
a logit equation. A key distinction is that the dependent variable of these
equations is the log of the odds of the ith alternative being chosen compared

to the base alternative:
P..
1i
ln(—)
Ppi




e = |

CHAPTER 13 « DUMMY DEPENDENT VARIABLE TECHNIQUES

451

where: Py, = the probability of the ith person choosing the first
alternative

Py; = the probability of the ith person choosing the base
alternative

you know that A/C = 6 and B/C = 2, then you can calculate that A/B = 3.)
For example, if n = 3, a5 in the commuter-work-trip example cited above,

and the base alternative is taking the bus, then a multinomial logit model
would have a system of two equations:

P..

P
1n<P—:i) = Bo + BiXy; + BoXs; (13.21)

where s = subway, ¢ = car, and b = bus.

The definitions of the independent variables (and therefore the meanings
of their coefficients) are unusual in a multinomial logit. Some of the Xs are
characteristics of the decision maker (like the income of the ith commuter).
The coefficients of these variables represent the difference between the impact
of income on the probability of choosing one mode and the impact of in-
come on the probability of choosing the base mode. For example, in Equa-

» the coefficient oy is the impact of an extra dollar

(holding X, constant).
Xs that aren’t characteristics of

the decision maker are usually characteris-
tics of the alternative (like trave

1 time for one of the possible modes of
travel). A variable that measures a characteristic of an alternative in a multi-
nomial logit model should be defined as the difference between the character-
istics for the two modes. For example, if the second independent variable in
our model is travel time to work, X3 should be defined as the travel time to
work by subway minus the travel time t
characteristics of the alternatives meas
1atio of the probabilities (holding X,
ings of the independent variables a
logit model, see Exercise 11.

The multinomial lo
logit but with two ad

constant). For practice with the mean-
nd their coefficients in a multinomial

git system has all the basic properties of the binomial
ditional complications in estimation. First, Equations
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13.20 and 13.21 are estimated simultaneously, !0 so the iterative nonlinear
maximum likelihood procedure used to estimate the system is more costly
than for the binomial logit. Second, the relationship between the error terms
in the equations (&g and €) must be strictly accounted for by using a GLS
procedure, a factor that also complicates the estimation procedure. u

134 summay

1. A linear probability model is a linear-in-the-coefficients equation
used to explain a dummy dependent variable (D;). The expected value
of D is the probability that D; equals one (Py).

7. The estimation of a linear probability model with OLS encounters
four major problems:
a. The error term is not normally distributed.
b. The error term is inherently heteroskedastic.
c. R? is not an accurate measure of overall fit.
d. The expected value of D; is not limited by 0 and 1.

3. When measuring the overall fit of equations with dummy dependent
variables, an alternative to RZis Rlz), the percentage of the observa-
tions in the sample that a particular estimated equation would have
explained correctly.

4. The binomial logit is an estimation technique for equations with
dummy dependent variables that avoids the unboundedness problem
of the linear probability model by using a variant of the cumulative
logistic function:

D.
1“([1 _l'Di']> =B + B1Xyi T BoXoyi T &

5 The binomial logit is best estimated using the maximum likelihood
technique and a large sample. A slope coefficient from a logit mea-
sures the impact of a one-unit increase of the independent variable in

10. As with the binomial logit, the maximum likelihood computer package doesn't estimate
these precise equations. Instead, it estimates versions of Equations 13.20 and 13.21 that are
similar to Equation 13.12.

11. For an interesting and yet accessible example of the estimation of a multinomial logit
model, see Kang H. Park and Peter M. Kerr, "Determinants of Academic Performance: A Multi-
nomial Logit Approach,” The Journal of Economic Education, 1990, pp. 101-111.
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question (holding the other explanatory variables constant) on the
log of the odds of a given choice.

6. The binomial probit model is an estimation technique for equations
with dummy dependent variables that uses the cumulative normal
distribution function. The binomial probit has properties quite simi-
lar to the binomial logit except that it takes more computer time to
estimate than a logit and is based on the normal distribution.

7. The multinomial logit model is an extension of the binomial logit
that allows more than two discrete alternatives to be considered si-
multaneously. One alternative is chosen as a base alternative, and
then each other possible choice is compared to that base alternative
with a logit equation.

(Answers to even-numbered exercises are in Appendix A.)

1. Write the meaning of each of the following terms without referring to
the book (or your notes), and compare your definition with the ver-
sion in the text for each:

a. linear probability model

b. R}

¢. binomial logit model

d. log of the odds

e. binomial probit model
sequential binary model

g multinomial logit model

™

2. On graph paper, plot each of the following linear probability models.
For what range of X, is 1 < D;? How about D; < 07

= 0.3 + 0.1X;

= 3.0 — 0.2%;

D; = —1.0 + 03X,

a. Di
b. D;
c. O

3. Bond ratings are letter ratings (Aaa = best) assigned to firms that is-
sue debt. These ratings measure the quality of the firm from the point
of view of the likelihood of repayment of the bond. Suppose you've
been hired by an arbitrage house that wants to predict Moody’s Bond
Ratings before they're published in order to buy bonds whose ratings
are going to improve. In particular, suppose your firm wants to distin-
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guish between A-rated bonds (high quality) and B-rated bonds
(medium quality) and has collected a data set of 200 bonds with
which to estimate a model. As you arrive on the job, your boss is
about to buy bonds based on the results of the following model
(standard errors in parentheses):

Y, = 0.70 + 0.05P; + 0.05PV; — 0.020D;
B (0.05)  (0.02) (0.002)
R2 = .69 DW = 0.50 n = 200

where:  Y; = 1 if the rating of the ith bond = A, 0 otherwise
P; = the profit rate of the firm that issues the ith bond
PV, = the standard deviation of P; over the last 5 years
D; = the ratio of debt to total capitalization of the firm
that issued the ith bond

a. What econometric problems, if any, exist in this equation?

b. What suggestions would you have for a rerun of this equation with
a different specification?

c. Suppose that your boss rejects your suggestions, saying, “This is the
real world, and I'm sure that my model will forecast bond ratings
just as well as yours will.” How would you respond? (Hint: Saying,
“Okay, boss, you win,” is sure to keep your job for you, but it won't
get much credit on this question.)

Show that the logistic function, D = 1/(1 + e~%), is indeed equiv-
alent to the binomial logit model, In[D/(1 — D)] = Z, where
Z=PBo+ BiXy + BXy T e

Plot each of the following binomial logit models. For what range of X;
is 1 < D;? How about D; < 0? (Hint: When you finish, compare your
answers to those for Exercise 2 above.)

a. In[D;/(1 — Dy)] = 0.3 + 0.1X;

b. In[D;/(1 — Dy)] = 3.0 — 0.2X;

C. ln[Dl/(l - Dl)] =—-10 + 03X1

R. Amatya!? estimated the following logit model of birth control for
1,145 continuously married women aged 35 to 44 in Nepal:

12. Ramesh Amatya, “Supply-Demand Analysis of Differences in Contraceptive Use in Seven

Asian Nations, Late 1970s” (paper presented at the Annual Meetings of the Western Economic
Association, 1988, Los Angeles).
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/\

D

(0.36) (0.14)
t=5.64 10.36
where:  D; =1 ifthe ith woman has ever used a recognized form

of birth control, 0 otherwise
WN; = 1 if the ith woman wants no more children, 0 oth-
erwise

ME; = number of methods of birth control known to the
ith woman

a. Explain the theoretical meaning of the coefficients for WN and ME.
How would your answer differ if this were a linear probability
mode]?

b. Do the signs, sizes, and significance of the estimated slope coeffi-
cients meet your expectations? Why or why not?

C. What is the theoretical significance of the constant term in this
equation?

d. If you could make one change in the specification of this equation,
what would it be? Explain your reasoning.

7. What happens if we define a dummy dependent variable over a range
other than zero to one? For example, suppose that in the research
cited above, Amatya had defined D; as being equal to 2 if the ith
woman had ever used birth control and zero otherwise.

a. What would happen to the size and theoretical meaning of the esti-
mated logit coefficients? Would they stay the same? Would they
change? (If so, how?)

b. How would your answers to part a above change if Amatya had es-
timated a linear probability model instead of a binomial logit?

8. Return to our data on women’s labor force participation and consider
the possibility of adding A,, the age of the ith woman, to the equa-
tion. Be careful when you develop your expected sign and functional
form because the expected impact of age on labor force participation
is difficult to pin down. For instance, some women drop out of the la-
bor force when they get married, but others continue working even
while they're raising their children. Still others work until they get
married, stay at home to have children, and then return to the work

force once the children reach school age. Malcolm Cohen et al., for

example, found the age of a woman to be relatively unimportant in
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determining labor force participation, except for women who were 65

and older and were likely to have retired.!3 The net result for our

model is that age appears to be a theoretically irrelevant variable. A

possible exception, however, is a dummy variable equal to one if the

ith woman is 65 or over and zero otherwise.

a. Look over the data set in Table 13.1. What problems do you see
with adding an independent variable equal to one if the ith woman
is 65 or older and zero otherwise?

b. If you go ahead and add the dummy implied above to Equation
13.15 and reestimate the model, you obtain the equation below.
Which equation do you prefer, Equation 13.15 or the one below?
Explain your answer.

—
D;
ln<m> = —5.89 — 2.59M; + 0.69S; — 0.03AD;
i (1.18)  (0.31) (0.30)
t=-219 219 -0.01
n =30 Rf) = .80 iterations = 5

where: AD; = 1 if the age of the ith woman is > 65, 0 otherwise

9. To get practice in actually estimating your own linear probability,
logit, and probit equations, test the possibility that age (4;) is actually
a relevant variable in our women’s labor force participation model.
That is, take the data from Table 13.1 and estimate each of the follow-
ing equations. Then use our specification criteria to compare your
equation with the parallel version in the text (without A;). Explain
why you do or do not think that age is a relevant variable.
a. the linear probability model D = f(M,AS)
b. the logit D = f(M,A,S)
¢. the probit D=f(M,A,S)

10. An article published in a book edited by A. Kouskoulaf and B. Lytle!4
presents coefficients from an estimated logit model of the choice be-
tween the car and public transportation for the trip to work in Boston.
All three public transportation modes in Boston (bus, subway, and
train, of which train is the most preferred) were lumped together as a

13. Malcolm Cohen, Samuel A. Rea, Jr. and Robert 1. Lerman, A Micro Model of Labor Supply
(Washington, D.C.: U.S. Bureau of Labor Statistics, 1970), p. 212.

14. “The Use of the Multinomial Logit in Transportation Analysis,” in A. Kouskoulaf and B.
Lytle, eds. Urban Housing and Transportation (Detroit: Wayne State University, 1975), pp. 87-90.
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Independent Variable Coefficient
Family income (9 categories with —0.12
1 =lowand9 = high)
Number employed in the family —1.09
Out-of-pocket costs (cents) -3.16
Wait time (tenths of minutes) 0.18
Walk time (tenths of minutes) —0.03
In-vehicle travel time (tenths of minutes) —0.01

The last four variables are defined as the difference between the value

of the variable for taking public transportation and its value for taking

the car.

a. Do the signs of the estimated coefficients agree with your prior ex-
pectations? Which one(s) differ?

b. The transportation literature hypothesizes that people would rather

11. Suppose that you want to build a multinomia] logit model of how
students choose which college to attend. For the sake of simplicity,
let’s assume that there are only four colleges to choose from: your col-

(SAT), and the tuition (T) of each college.

a. How many equations should there be in such 3 multinomial logit
system?

b. If your college is the base, write out the definition of the dependent

variable for each equation.






