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bility model is just that, a linear-in-the-coefficients equation used to explaina dummy dependent variable: 

(13.1) where Di is a dummy variable and the Xs, [3s, and E are typical independentvariables, regression coefficients, and an error term, respectively. For example, suppose you're interested in understanding why some state 
legislatures voted to ratify the Equal Rights Amendment (ERA) to the Consti­tution and others did not. In such a model, the appropriate dependent vari­able would be a dummy, for example Di equal to one if the ith state ratifiedthe ERA and equal to zero otherwise. If we hypothesize that states with a highpercentage of females and a low percentage of Republicans would be likely tohave approved the amendment, then a linear probability model of ERA vot­ing by state would be: 

where: Di = 1 if the ith state ratified the ERA, O otherwise Fi = females as a percent of the ith state's population Ri = Republicans as a percent of the ith state's registered voters 
The term linear probability model comes from the fact that the right-hand side ofthe equation is linear, while the expected value of the left side is a probability.Let's discuss more thoroughly the concept that this equation measures a proba­bility. It can be shown that the expected value of Di equals the probability thatDi will equal one. 1 If we define Pi as the probability that Di equals one, thenthis is the same as saying that the expected value of Di equals Pi. Since Equation13.1 specifies this choice as a fu nction of Xu, X2i, this can be formally stated as:

(13.2) We can never observe the probability Pi, however, because it reflects the state 
of mind of a decision maker before a discrete choice is made. After a choice is 
made, we can observe only the outcome of that choice, and so the dependent 

I. The expected value of a variable equals the sum of the products of each of the possible values
the variable can take times the probability of that value occurring. If P; is defined as the proba­
bility that D; will equal one, then the probability that D; will equal zero is ( I - P;), since D;
can take on only two values. Thus, the expected value of D; = P; • I + ( I - P;) • O = P;, the
probability that D; equals one. 


















































